Virtual concordance and the generalized Alexander polynomial

Author:

Boden Hans U.1ORCID,Chrisman Micah2

Affiliation:

1. Mathematics & Statistics, McMaster University, Hamilton, Ontario L8S 4K1, Canada

2. Mathematics, The Ohio State University, Marion Campus, Marion, Ohio 43302, USA

Abstract

We use the Bar-Natan Ж-correspondence to identify the generalized Alexander polynomial of a virtual knot with the Alexander polynomial of a two component welded link. We show that the Ж-map is functorial under concordance, and also that Satoh’s Tube map (from welded links to ribbon knotted tori in [Formula: see text]) is functorial under concordance. In addition, we extend classical results of Chen, Milnor and Hillman on the lower central series of link groups to links in thickened surfaces. Our main result is that the generalized Alexander polynomial vanishes on any knot in a thickened surface which is virtually concordant to a homologically trivial knot. In particular, this shows that it vanishes on virtually slice knots. We apply it to complete the calculation of the slice genus for virtual knots with four crossings and to determine non-sliceness for a number of 5-crossing and 6-crossing virtual knots.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

World Scientific Pub Co Pte Lt

Subject

Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New invariants for virtual knots via spanning surfaces;Journal of Knot Theory and Its Ramifications;2024-04-15

2. Milnor’s concordance invariants for knots on surfaces;Algebraic & Geometric Topology;2022-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3