Affiliation:
1. Graz University of Technology, Institute of Mathematics A, Steyrergasse 30, 8010 Graz, Austria
Abstract
We consider the problem of estimating 𝔼[f(U1, …, Ud)], where (U1, …, Ud) denotes a random vector with uniformly distributed marginals. In general, Latin hypercube sampling (LHS) is a powerful tool for solving this kind of high-dimensional numerical integration problem. In the case of dependent components of the random vector (U1, …, Ud) one can achieve more accurate results by using Latin hypercube sampling with dependence (LHSD). We state a central limit theorem for the d-dimensional LHSD estimator, by this means generalising a result of Packham and Schmidt. Furthermore we give conditions on the function f and the distribution of (U1, …, Ud) under which a reduction of variance can be achieved. Finally we compare the effectiveness of Monte Carlo and LHSD estimators numerically in exotic basket option pricing problems.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Economics, Econometrics and Finance,Finance
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献