Low Power, High Speed and Area Efficient Binary Count Multiplier

Author:

Dattatraya Kore Sagar1,Appasaheb Belgudri Ritesh1,Khaladkar Ramdas Bhanudas1,Bhaaskaran V. S. Kanchana1

Affiliation:

1. School of Electronics Engineering, VIT University, Chennai, TN, India

Abstract

Multiplier forms the core building block of any processor, such as the digital signal processor (DSP) and a general purpose microprocessor. As the word length increases, the number of adders or compressors required for the partial product addition also increases. The addition operation of the derived partial products determines the circuit latency, area and speed performance of wider word-length multipliers. Binary count multiplier (BCM) aims to reduce the number of adders and compressors through the use of a uniquely structured binary counter and by suitably altering the logical flow of partial product addition by using binary adders is proposed in this paper. The binary counters for varying bit count values are derived by modifying the basic 4:2 compressor circuit. A [Formula: see text] bit multiplier has been developed to validate the proposed computation method. This logic structure demonstrates lower power operation, reduced device count and lesser delay in comparison against the conventional Wallace tree multiplier structure found in the literature. The BCM implementation realizes 29.17% reduction in the device count, 66% reduction in the delay and 70% reduction in the power dissipation. Furthermore, it realizes 90% reduction in the power delay product (PDP) in comparison against the Wallace tree structure. The multiplier circuits have been implemented and the validation of results has been carried out using Cadence[Formula: see text] EDA tool. Forty five nanometer technology files have been employed for the designs and exhaustive SPICE simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Power and Area Efficient Borrow Select Subtractor;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

2. Investigation and Analysis of Power Performance Area (PPA) Cards of Digital Multiplier Architectures;Journal of Circuits, Systems and Computers;2022-08-25

3. Borrow Select Subtractor for Low Power and Area Efficiency;2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI);2020-07

4. Low-Power Modified Shift-Add Multiplier Design Using Parallel Prefix Adder;Journal of Circuits, Systems and Computers;2018-11-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3