Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting

Author:

Dias Garcia Joaquim12ORCID,Street Alexandre2ORCID,Homem-de-Mello Tito3ORCID,Muñoz Francisco D.4ORCID

Affiliation:

1. PSR, Rio de Janeiro 22250-040, Brazil;

2. LAMPS, DEE, PUC-Rio, Rio de Janeiro 22451-900, Brazil;

3. School of Business, Universidad Adolfo Ibáñez, Santiago 7941169, Chile;

4. Generadoras de Chile, Santiago 7561127, Chile

Abstract

Application-Driven Learning: Closing the Loop Between the Application and the Estimation of Forecast Models This paper introduces a closed-loop framework called application-driven learning, where the best forecast model is tailored to the application cost structure. Our methodology employs two-stage optimization schemes to derive multivariate point forecasts. The estimation problem is conceived as a bilevel model, and we propose two solution methodologies: an exact one using KKT conditions and a scalable decomposition heuristic. This approach offers a scientifically grounded alternative to ad hoc demand biasing approaches and reserve requirement rules currently adopted by power system operators worldwide. Testing with real data and large-scale systems demonstrates that our methodology consistently outperforms traditional open-loop methods, providing significant potential benefits for energy system operations.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3