Distributionally Robust Newsvendor Under Stochastic Dominance with a Feature-Based Application

Author:

Fu Mingyang1ORCID,Li Xiaobo1ORCID,Zhang Lianmin23ORCID

Affiliation:

1. Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore 117576;

2. Shenzhen Research Institute of Big Data, Shenzhen 518172, China;

3. School of Management and Economics, Shenzhen Finance Institute, Chinese University of Hong Kong, Shenzhen 518172, China

Abstract

Problem definition: In this paper, we study the newsvendor problem under some distributional ambiguity sets and explore their relations. Additionally, we explore the benefits of implementing this robust solution in the feature-based newsvendor problem. Methodology and results: We propose a new type of discrepancy-based ambiguity set, the JW ambiguity set, and analyze it within the framework of first-order stochastic dominance. We show that the distributionally robust optimization (DRO) problem with this ambiguity set admits a closed-form solution for the newsvendor loss. This result also implies that the newsvendor problem under the well-known infinity-Wasserstein ambiguity set and Lévy ball ambiguity set admit closed-form inventory levels as a by-product. In the application of feature-based newsvendor, we adopt general kernel methods to estimate the conditional demand distribution and apply our proposed DRO solutions to account for the estimation error. Managerial implications: The closed-form solutions enable an efficient computation of optimal inventory levels. In addition, we explore the property of optimal robust inventory levels with respect to the nonrobust version via concepts of perceived critical ratio and mean repulsion. The results of numerical experiments and the case study indicate that the proposed model outperforms other state-of-the-art approaches, particularly in environments where demand is influenced by covariates and difficult to estimate. Funding: X. Li is supported by the Singapore Ministry of Education [Tier 1 Grant 23-0619-P0001, 24-0500-A0001] and National Natural Science Foundation of China [Grant 72331004]. L. Zhang is partially supported by the National Natural Science Foundation of China [Grants 72171156 and 72231002] and the Hong Kong Research Grants Council [Grant 16212419]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2023.0159 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3