The microbiome of Total Suspended Particles (TSP) and its influence on the respiratory microbiome of healthy office workers

Author:

Solazzo GiuliaORCID,Rovelli SabrinaORCID,Iodice Simona,Chung Matthew,Frimpong Michael,Bollati ValentinaORCID,Ferrari LucaORCID,Ghedin ElodieORCID

Abstract

ABSTRACTAir particulate matter (PM) is widely recognized for its potential to negatively affect human health, including changes in the upper respiratory microbiome. However, research on PM-associated microbiota remains limited and mostly focused on PM (e.g., PM2.5and PM10). This study aims to characterize for the first time the microbiome of Total Suspended Particles (TSP) and investigate the correlations of indoor TSP with the human upper respiratory microbiome. Biological and environmental samples were collected over three collection periods lasting three weeks each, between May and July 2022 at the University of Milan and the University of Insubria Como. TSP were sampled using a filter-based technique, while respiratory samples from both anterior nares (AN) and the nasopharynx (NP) were collected using swabs. Microbiome analysis of both human (N = 145) and TSP (N = 51) samples was conducted on metagenomic sequencing data. A comparison of indoor and outdoor TSP microbiomes revealed differences in microbial diversity and taxonomic composition. The indoor samples had higher relative abundance of environmental bacteria often associated with opportunistic infections likeParacoccussp., as well as respiratory bacteria such asStaphylococcus aureusandKlebsiella pneumoniae. Additionally, both indoor and outdoor TSP samples contained broad spectrum antibiotic resistance genes. Indoor TSP exposure was negatively associated with commensal bacteria and positively associated withStaphylococcus aureusrelative abundance. Finally, a correlation between the relative abundance of respiratory bacteria identified in the indoor TSP and the upper respiratory microbiome was found, suggesting a potential interaction between TSP and the upper airways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3