Deciphering regulation of FOXP3 expression in human conventional T cells

Author:

Umhoefer Jennifer M.ORCID,Arce Maya M.,Dajani Rama,Belk Julia A.,Mowery Cody T.,Nguyen Vinh,Gowen Benjamin G.,Simeonov Dimitre R.,Curie Gemma L.,Corn Jacob E.ORCID,Chang Howard Y.,Marson Alexander

Abstract

ABSTRACTFOXP3 is a lineage-defining transcription factor that controls differentiation and maintenance of suppressive function of regulatory T cells (Tregs). Foxp3 is exclusively expressed in Tregs in mice. However, in humans, FOXP3 is not only constitutively expressed in Tregs; it is also transiently expressed in stimulated CD4+CD25-conventional T cells (Tconvs)1–3. Mechanisms governing the expression of FOXP3 in human Tconvs are not understood. Here, we performed CRISPR interference (CRISPRi) screens using a 15K-member gRNA library tiling 39 kb downstream of theFOXP3transcriptional start site (TSS) to 85 kb upstream of the TSS in Treg and Tconvs. TheFOXP3promoter and conserved non-coding sequences (CNS0, CNS1, CNS2 and CNS3), characterized as enhancer elements in murine Tregs, were required for maintenance of FOXP3 in human Tregs. In contrast, FOXP3 in human Tconvs depended on regulation at CNS0 and a novel Tconv-specific noncoding sequence (TcNS+) located upstream of CNS0. Arrayed validations of these sites identified an additional repressive cis-element overlapping with thePPP1R3Fpromoter (TcNS-). Pooled CRISPR knockouts revealed multiple transcription factors required for proper expression of FOXP3 in Tconvs, including GATA3, STAT5, IRF4, ETS1 and DNA methylation-associated regulators DNMT1 and MBD2. Analysis of ChIP-seq and ATAC-seq paired with knock-out (KO) of GATA3, STAT5, IRF4, and ETS1 revealed regulation of CNS0 and TcNS+ accessibility. Collectively, this work identified Treg-shared and Tconv-specific cis-elements and the trans-factors that interact with them, building a network of regulators controlling FOXP3 expression in human Tconvs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3