Non-spatial hippocampal behavioral timescale synaptic plasticity during working memory is gated by entorhinal inputs

Author:

Dorian Conor C.,Taxidis Jiannis,Golshani Peyman

Abstract

ABSTRACTBehavioral timescale synaptic plasticity (BTSP) is a form of synaptic potentiation where the occurrence of a single large plateau potential in CA1 hippocampal neurons leads to the formation of reliable place fields during spatial learning tasks. We asked whether BTSP could also be a plasticity mechanism for generation of non-spatial responses in the hippocampus and what roles the medial and lateral entorhinal cortex (MEC and LEC) play in driving non-spatial BTSP. By performing simultaneous calcium imaging of dorsal CA1 neurons and chemogenetic inhibition of LEC or MEC while mice performed an olfactory working memory task, we discovered BTSP-like events which formed stable odor-specific fields. Critically, the success rate of calcium events generating a significant odor-field increased with event amplitude, and large events exhibited asymmetrical formation with the newly formed odor-fields preceding the timepoint of their induction event. We found that MEC and LEC play distinct roles in modulating BTSP: MEC inhibition reduced the frequency of large calcium events, while LEC inhibition reduced the success rate of odor-field generation. Using two-photon calcium imaging of LEC and MEC temporammonic axons projecting to CA1, we found that LEC projections to CA1 were strongly odor selective even early in task learning, while MEC projection odor-selectivity increased with task learning but remained weaker than LEC. Finally, we found that LEC and MEC inhibition both slowed representational drift of odor representations in CA1 across 48 hours. Altogether, odor-specific information from LEC and strong odor-timed activity from MEC are crucial for driving BTSP in CA1, which is a synaptic plasticity mechanism for generation of both spatial and non-spatial responses in the hippocampus that may play a role in explaining representational drift and one-shot learning of non-spatial information.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3