All-Diamond Boron-Doped Microelectrodes for Neurochemical Sensing with Fast-Scan Cyclic Voltammetry

Author:

Gupta Bhavna,Kepros Brandon,Landgraf Jann B.ORCID,Becker Michael F.,Li WenORCID,Purcell Erin K.,Siegenthaler James R.ORCID

Abstract

AbstractNeurochemical sensing with implantable devices has gained remarkable attention over the last few decades. A promising area of this research is the progress of novel electrodes as electrochemical tools for neurotransmitter detection in the brain. The boron-doped diamond (BDD) electrode is one such candidate that previously has been reported for its excellent electrochemical properties, including a wide working potential, superior chemical inertness and mechanical stability, good biocompatibility and resistance to fouling. Meanwhile, limited research has been conducted on the BDD as a microelectrode for neurochemical detection. Our team has developed a freestanding, all diamond microelectrode consisting of a boron-doped polycrystalline diamond core, encapsulated in an insulating polycrystalline diamond shell, with a cleaved planar tip for electrochemical sensing. This all-diamond electrode is advantageous due to its – (1) batch fabrication using wafer technology that eliminates traditional hand fabrication errors and inconsistencies, (2) absence of metal-based wires, or foundations, to improve biocompatibility and flexibility, and (3) sp3carbon surface with resistance to biofouling, i.e. adsorption of proteins or unwanted molecules at the electrode surface in a biological environment that impedes overall electrode performance. Here, we provide findings on further in vitro testing and development of the freestanding boron-doped diamond microelectrode (BDDME) for neurotransmitter detection using fast scan cyclic voltammetry (FSCV). In this report, we elaborate on – 1) an updated fabrication scheme and work flow to generate all diamond BDDMEs, 2) slow scan cyclic voltammetry measurements of reference and target analytes to understand basic electrochemical behavior of the electrode, and 3) FSCV characterization of common neurotransmitters, and overall favorability of serotonin (5-HT) detection. The BDDME showed a 2-fold increased FSCV response for 5-HT in comparison to dopamine (DA), with a limit of detection of 0.16 µM for 5-HT and 0.26 µM for DA. These results are intended to expand on the development of the next generation BDDME and guide future in vivo experiments, adding to the growing body of literature on implantable devices for neurochemical sensing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3