Evidencing the role of a conserved polar signaling channel in the activation mechanism of the μ-opioid receptor

Author:

Sarkar ArijitORCID,Dvorácskó SzabolcsORCID,Lipinszki ZoltánORCID,Mitra ArghaORCID,Harmati MáriaORCID,Buzás KrisztinaORCID,Borics AttilaORCID

Abstract

AbstractThe activity of G protein-coupled receptors has been generally linked to dynamically interconverting structural and functional states and the process of activation was proposed to be controlled by an interconnecting network of conformational switches in the transmembrane domain. However, it is yet to be uncovered how ligands with different extent of functional effect exert their actions. According to our recent hypothesis, the transmission of the external stimulus is accompanied by the shift of macroscopic polarization in the transmembrane domain, furnished by concerted movements of conserved polar amino acids and the rearrangement of polar species. Previously, we have examined the μ-opioid, β2-adrenergic and type 1 cannabinoid receptors by performing molecular dynamics simulations. Results revealed correlated dynamics of a polar signaling channel connecting the orthosteric binding pocket and the intracellular G protein-binding surface in all three class A receptors. In the present study, the interplay of this polar signaling channel in the activation mechanism was evidenced by systematic mutation of the channel residues of the μ-opioid receptor. Mutant receptors were analyzed utilizing molecular dynamics simulations and characterizedin vitroby means of radioligand receptor binding and G protein stimulation assays. Apart from one exception, all mutants failed to bind the endogenous agonist endomorphin-2 and to stimulate the Giprotein complex. Furthermore, mutation results confirmed strong allosteric coupling between the binding pocket and the intracellular surface. The strong association and optimal bioactive orientation of the bound agonist was found to be crucial for the initiation of correlated motions and consequent signaling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3