Efficient modular system identification provides a high-resolution assay of temporal processing and reveals the multilevel effects of attention along the human auditory pathway

Author:

Singh RavinderjitORCID,Bharadwaj HariORCID

Abstract

AbstractHuman studies of auditory temporal processing and the effects therein of aging, hearing loss, musicianship, and other auditory processing disorders have conventionally employed brainstem evoked potentials (e.g., FFRs/EFRs targeting specific modulation frequencies). Studies of temporal processing in forebrain structures are fewer and are often restricted to the 40 Hz steady-state response. One factor contributing to the limited investigation is the lack of a fast and reliable method to characterize temporal processing non-invasively in humans over a wide range of modulation frequencies. Here, we use a system-identification approach where white noise, modulated using an extended maximum-length sequence (em-seq), is employed to target stimulus energy toward a modulation-frequency range of interest and efficiently obtain a robust auditory modulation-temporal response function or ‘mod-TRF’. The mod-TRF can capture activity from sources in the early processing pathway (5-7 ms latency), middle-latency region (MLR), and late latency region (LLR). The mod-TRF is a high-resolution, modular assay of the temporal modulation transfer function (tMTF) in that the distinct neural components contributing to the tMTF can be separated on the basis of their latency, modulation frequency band, and scalp topography. This decomposition provides the insight that the seemingly random individual variation in the shape of the tMTF can be understood as arising from individual differences in the weighting and latency of similar underlying neural sources in the composite scalp response. We measured the mod-TRF under different states of attention and found a reduction in latency or enhancement of amplitude of the response from specific sources. Surprisingly, we found that attention effects can extend to the earliest parts of the processing pathway (5ms) in highly demanding tasks. Taken together, the mod-TRF is a promising tool for dissecting auditory temporal processing and obtain further insight into a variety of phenomenon such as aging, hearing loss, and neural pathology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3