A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection

Author:

Hanada Kousuke,Zhang Xu,Borevitz Justin O.,Li Wen-Hsiung,Shiu Shin-Han

Abstract

Large-scale cDNA sequencing projects and tiling array studies have revealed the presence of many unannotated genes. For protein coding genes, small coding sequences may not be identified by gene finders because of the conservative nature of prediction algorithms. In this study, we identified small open reading frames (sORFs) with high coding potential by a simple gene finding method (Coding Index, CI) based on the nucleotide composition bias found in most coding sequences. Applying this method to 18 Arabidopsis thaliana and 84 yeast sORF genes with evidence of expression at the protein level gives 100% accurate prediction. In the A. thaliana genome, we identified 7159 sORFs that are likely coding sequences (coding sORFs) with the CI measure at the 1% false-positive rate. To determine if these coding sORFs are parts of functional genes, we evaluated each coding sORF for evidence of transcription or evolutionary conservation. At the 5% false-positive rate, we found that 2996 coding sORFs are likely expressed in at least one experimental condition of the A. thaliana tiling array data. In addition, the evolutionary conservation of each A. thaliana sORF was examined within A. thaliana or between A. thaliana and five plants with complete or partial genome sequences. In 3997 coding sORFs with readily identifiable homologous sequences, 2376 are subject to purifying selection at the 1% false-positive rate. After eliminating coding sORFs with similarity to known transposable elements and those that are likely missing exons of known genes, the remaining 3241 coding sORFs with either evidence of transcription or purifying selection likely belong to novel coding genes in the A. thaliana genome.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3