A kinetic operational model of agonism incorporating receptor desensitization for G-protein-coupled receptors

Author:

Hoare Sam R.J.,Hall David A.,Bridge Lloyd J.

Abstract

AbstractPharmacological responses are modulated over time by regulation of signaling mechanisms. The canonical short-term regulation mechanisms are receptor desensitization and degradation of the response. Here for the first time a pharmacological model for measuring drug parameters is developed that incorporates short-term mechanisms of regulation of signaling. The model is formulated in a manner that enables measurement of drug parameters using familiar curve fitting methods. The efficacy parameter iskτ, which is simply the initial rate of signaling before it becomes limited by regulation mechanisms. The regulation parameters are rate constants,kDESfor receptor desensitization andkDfor response degradation. Efficacy and regulation are separate parameters, meaning these properties can be optimized independently of one another in drug discovery. The parameters can be applied to translate in vitro findings to in vivo efficacy in terms of the magnitude and duration of drug effect. When the time course data conform to certain shapes, for example the association exponential curve, a mechanism-agnostic approach can be applied to estimate agonist efficacy, without the need to know the underlying regulatory mechanisms. The model was verified by comparison with historical data and by fitting these data to estimate the model parameters. This new model for quantifying drug activity can be broadly applied to the short-term cell signaling assays used routinely in drug discovery and to aid their translation to in vivo efficacy, facilitating the development of new therapeutics.HighlightsRegulation of signaling impacts measurement of drug effectReceptor desensitization is incorporated here into a kinetic model of signalingDrug effect and signaling regulation can now be measured independentlyThe analysis framework is designed for signaling assays used in drug discoveryThese new analysis capabilities will aid development of new therapeutics

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3