Hippocampal silent infarct leads to subtle cognitive decline that is associated with inflammation and gliosis at twenty-four hours after injury in a rat model

Author:

Finney Caitlin A.,Morris Margaret J.ORCID,Westbrook R. Frederick,Jones Nicole M.

Abstract

AbstractSilent infarcts (SI) are subcortical cerebral infarcts that occur in the absence of clinical symptoms commonly associated with ischemia and are linked to dementia development. Little is known about the pathophysiology underlying the cognitive dysfunction associated with SI, and few studies have examined the early cellular responses and neurobiological underpinnings. We induced SI in adult male Sprague-Dawley rats using an infusion of endothelin-1 in the CA1 dorsal hippocampus. Twenty-four hours later, we assessed cognition using the hippocampal-dependent object place recognition task. We also examined whether the resulting cognitive effects were associated with common markers of ischemia, specifically cell and synapse loss, gliosis, and inflammation, using histology and immunohistochemistry. Hippocampal SI led to subtle cognitive impairment on the object place recognition task 24-hours post-injury. This was characterized by a significant difference in exploration proportion relative to a pre-injury baseline and a positive association between time spent with both the moved and unmoved objects. SI did not result in any detectable cell or synaptophysin loss, but did increase apoptosis, gliosis and inflammation in the CA1. Principal component analysis indicated the main variables associated with hippocampal SI included increased time spent with the unmoved object, gliosis, apoptosis and inflammation as well as decreased exploration proportion and CA1 cells. Our data demonstrate that hippocampal SI can lead to cognitive dysfunction 24-hours after injury. Further, this appears to be driven by early degenerative processes including apoptosis, gliosis and inflammation, suggesting that these may be targets for early interventions treating hippocampal SI and its cognitive consequences.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3