Post Traumatic Seizure Classification with Missing Data using Multimodal Machine Learning on dMRI, EEG, and fMRI

Author:

Akbar Md NavidORCID,Ruf Sebastian F.,Singh Ashutosh,Faghihpirayesh Razieh,Garner Rachael,Bennett Alexis,Alba Celina,Rocca Marianna La,Imbiriba Tales,Erdoğmuş Deniz,Duncan Dominique

Abstract

AbstractLate post-traumatic seizure (LPTS) is a complication of traumatic brain injury (TBI), which can lead to a potentially lifelong condition of post-traumatic epilepsy (PTE). Currently, the patho-mechanism that induces epileptogenesis in TBI subjects is unclear. As such, the epilepsy community strives to identify which TBI subjects will develop epilepsy and find potential biomarkers. To that end, this study collects longitudinal multimodal data from TBI subjects at multiple participating institutes. A supervised, binary classification task is formed with data from the LPTS versus no LPTS subjects. Missing modalities in certain subjects is handled in two ways. First, we extend a graphical model based Bayesian estimator to directly classify subjects with missing modality, and second, we investigate standard imputation techniques. The multimodal information is then combined, following several fusion and dimensionality reduction techniques found in literature, and eventually fitted to a kernelor a tree-based classifier. For this fusion, we propose two new algorithms: recursive elimination of correlated components (RECC) which filters information based on correlation, and information decomposition and selective fusion (IDSF) which meaningfully recombines information from decomposed multimodal features. Based on the cross-validated area under the curve (AUC) score, we find the proposed IDSF algorithm provides the best performance. Finally, following statistical analyses of the frequently selected features, we recommend alterations in inferior temporal gyrus as a potential biomarker.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3