A pan-cancer PDX histology image repository with genomic and pathological annotations for deep learning analysis

Author:

White Brian S,Woo Xing Yi,Koc Soner,Sheridan Todd,Neuhauser Steven B,Wang ShidanORCID,Evrard Yvonne A,Landua John David,Mashl R Jay,Davies Sherri R,Fang Bingliang,Raso Maria Gabriela,Evans Kurt W,Bailey Matthew H,Chen Yeqing,Xiao Min,Rubinstein Jill,pour Ali Foroughi,Dobrolecki Lacey Elizabeth,Fujita Maihi,Fujimoto Junya,Xiao Guanghua,Fields Ryan C,Mudd Jacqueline L,Xu Xiaowei,Hollingshead Melinda G,Jiwani Shahanawaz,Davis-Dusenbery Brandi,Wallace Tiffany A,Moscow Jeffrey A,Doroshow James H,Mitsiades Nicholas,Kaochar Salma,Pan Chong-xian,Chen Moon S,Carvajal-Carmona Luis GORCID,Welm Alana L,Welm Bryan E,Govindan Ramaswamy,Li Shunqiang,Davies Michael A,Roth Jack A,Meric-Bernstam Funda,Xie Yang,Herlyn Meenhard,Ding Li,Lewis Michael T,Bult Carol J,Dean Dennis A,Chuang Jeffrey HORCID,

Abstract

AbstractPatient-derived xenografts (PDXs) model human intra-tumoral heterogeneity in the context of the intact tissue of immunocompromised mice. Histological imaging via hematoxylin and eosin (H&E) staining is performed on PDX samples for routine assessment and, in principle, captures the complex interplay between tumor and stromal cells. Deep learning (DL)-based analysis of largehumanH&E image repositories has extracted inter-cellular and morphological signals correlated with disease phenotype and therapeutic response. Here, we present an extensive, pan-cancer repository of nearly 1,000PDXand paired human progenitor H&E images. These images, curated from the PDXNet consortium, are associated with genomic and transcriptomic data, clinical metadata, pathological assessment of cell composition, and, in several cases, detailed pathological annotation of tumor, stroma, and necrotic regions. We demonstrate that DL can be applied to these images to classify tumor regions and to predict xenograft-transplant lymphoproliferative disorder, the unintended outgrowth of human lymphocytes at the transplantation site. This repository enables PDX-specific, investigations of cancer biology through histopathological analysis and contributes important model system data that expand on existing human histology repositories. We expect the PDXNet Image Repository to be valuable for controlled digital pathology analysis, both for the evaluation of technical issues such as stain normalization and for development of novel computational methods based on spatial behaviors within cancer tissues.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3