Antagonistic roles of canonical and alternative RPA in tandem CAG repeat diseases

Author:

Gall-Duncan Terence,Luo Jennifer,Jurkovic Carla-Marie,Fischer Laura A.,Fujita Kyota,Leib David E.,Li Vanessa,Harding Rachel J.,Tran Stephanie,Chen Ran,Tanaka Hikari,Deshmukh Amit L.,Mason Amanda G.,Lévesque Dominique,Khan Mahreen,Lanni Stella,Sato Nozomu,Caron Marie-Christine,Masson Jean-Yves,Panigrahi Gagan B.,Prasolava Tanya,Wang Peixiang,Lau Rachel,Tippett Lynette,Turner Clinton,La Spada Albert R.,Campos Eric I.,Curtis Maurice A.,Boisvert François-Michel,Faull Richard L.M.,Davidson Beverly L.,Okazawa Hitoshi,Wold Marc S.,Pearson Christopher E.

Abstract

ABSTRACTTandem CAG repeat expansion mutations cause >15 neurodegenerative diseases, where ongoing expansions in patients’ brains are thought to drive disease onset and progression. Repeat length mutations will involve single-stranded DNAs prone to form mutagenic DNA structures. However, the involvement of single-stranded DNA binding proteins (SSBs) in the prevention or formation of repeat instability is poorly understood. Here, we assessed the role of two SSBs, canonical RPA (RPA1-RPA2-RPA3) and the related Alternative-RPA (Alt-RPA, RPA1-RPA4-RPA3), where the primate-specific RPA4 replaces RPA2. RPA is essential for all forms of DNA metabolism, while Alt-RPA has undefined functions. RPA and Alt-RPA are upregulated 2- and 10-fold, respectively, in brains of Huntington disease (HD) and spinocerebellar ataxia type 1 (SCA1) patients. Correct repair of slipped-CAG DNA structures, intermediates of expansion mutations, is enhanced by RPA, but blocked by Alt-RPA. Slipped-DNAs are bound and melted more efficiently by RPA than by Alt-RPA. Removal of excess slipped-DNAs by FAN1 nuclease is enhanced by RPA, but blocked by Alt-RPA. Protein-protein interactomes (BioID) reveal unique and shared partners of RPA and Alt-RPA, including proteins involved in CAG instability and known modifiers of HD and SCA1 disease. RPA overexpression inhibits rampant CAG expansions in SCA1 mouse brains, coinciding with improved neuron morphology and rescued motor phenotypes. Thus, SSBs are involved in repeat length mutations, where Alt-RPA antagonistically blocks RPA from suppressing CAG expansions and hence pathogenesis. The processing of repeat length mutations is one example by which an Alt-RPA↔RPA antagonistic interaction can affect outcomes, illuminating questions as to which of the many processes mediated by canonical RPA may also be modulated by Alt-RPA.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3