A genome-wide CRISPR interference screen using an engineered trafficking biosensor reveals a role for RME-8 in opioid receptor regulation

Author:

Novy Brandon,Adoff Hayden,De Maria Monica,Kampmann MartinORCID,Tsvetanova Nikoleta G.ORCID,von Zastrow Mark,Lobingier BradenORCID

Abstract

AbstractG protein-coupled receptors (GPCRs) are the largest family of membrane-bound signaling molecules. Activity of these receptors is critically regulated by their trafficking through the endo-lysosomal pathway. Identifying the genes involved in GPCR trafficking is challenging due the complexity of sorting operations and low affinity protein-protein interactions. Here we present a chemical biology fluorescence-based technique to interrogate GPCR trafficking. We show that the engineered enzyme APEX2 is a highly sensitive biosensor for GPCR trafficking to the lysosome, and this trafficking can be monitored through APEX-based activation of fluorogenic substrates such as Amplex UltraRed (AUR). We used this approach to perform a genome-wide CRISPR interference screen focused on the delta type opioid receptor (DOR), a GPCR which modulates anxiety, depression, and pain. The screen identified 492 genes including known- and novel-regulators of DOR expression and trafficking. We demonstrate that one of the novel genes, RME-8, localizes to early endosomes and plays a critical role in regulating DOR trafficking to the lysosome. Together, our data demonstrate that GPCR-APEX2/AUR is a flexible and highly sensitive chemical biology platform for genetic interrogation of receptor trafficking.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3