In-cell chemical crosslinking identifies hotspots for p62-IκBα interaction that underscore a critical role of p62 in limiting NF-κB activation through IκBα-stabilization

Author:

Liu Yi,Trnka Michael J.,He Liang,Burlingame A. L.,Correia Maria Almira

Abstract

ABSTRACTWe have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47 and K67) and C-terminal (K238/C239) residues in its 5thankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) in the intervening region between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα co-transfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62’s capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα’s interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62-interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling, leads us to speculate that it may be involved in “piggy-back” nuclear transport of IκBα following its NF-κB-elicited transcriptional activation andde novosynthesis, required for the termination of the NF-κB-activation cycle. Consequently, mice carrying a liver specific deletion of p62-residues 68-252 harboring its positively charged patch, reveal age-dependent enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.Abstract FigureHighlightsp62 binds to and stabilizes IκBα by preventing its proteolytic degradationIn-cell chemical crosslinking/LC-MS/MS identified the inter-crosslinked sitesHotspots of p62-IκBα association are definedAPEX proximity labeling revealed p62 impaired IκBα-interaction with proteasomep62 chaperones newly synthesized IκBα to terminate NF-κB activation.In BriefThe transcriptional activator NF-κB inhibitor, IκBα is proteolytically unstable when uncomplexed. How newly synthesized IκBα escapes degradation to terminate nuclear NF-κB-activation is unknown. Using in-cell chemical crosslinking and proximity labeling MS analyses, we uncovered a novel association of p62 with IκBα via well-defined structural hotspots, which impairs its interaction with the 26S/20S proteasome, extending its life-span and enabling termination of NF-κB-activation. Mice carrying liver-specific genetic deletion of p62-IκBα hotspot exhibit enhanced liver inflammation upon aging, validating this novel p62 role.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3