Comprehensive single-cell transcriptomic analysis of embryonic melanoblasts uncovers lineage-specific mechanisms of melanoma metastasis and therapy resistance

Author:

Gopalan VishakaORCID,Day Chi-Ping,Pérez-Guijarro Eva,Chin Sung,Ebersole Jessica,Smith Cari,Simpson Mark,Sassano Antonella,Constantino Maira Alves,Wu Emily,Yang Howard H.,Lee Maxwell P.,Hannenhalli Sridhar,Merlino Glenn,Marie Kerrie L.ORCID

Abstract

AbstractAcross cancers, tumor cells can resemble embryonic cell states that may allow them to metastasize and evade therapies. Melanoma is a cancer of the melanocyte that exhibits a wide range of transcriptional states characterized by alterations in embryonic melanocyte gene expression patterns. How these states and their functions are related to the embryonic precursors of melanocytes, the melanoblasts, is unknown. Here, we present the first high-resolution single-cell RNA-seq profiles of embryonic melanocytic lineages in mice. We discover a diverse array of transcriptional cell states in this lineage and confirm, for the first time at the single-cell level, that melanocytes arise from Schwann-cell precursors (SCPs), a highly plastic cell population, via a newly described intermediate mesenchymal-like state. Via novel computational strategies to map these developmental cell states to metastatic melanoma, we find that SCP-resembling tumors are associated with exclusion of the immune cells and non-response to immune checkpoint blockade. In contrast, a higher mesenchymal profile underlies immune dysfunction and resistance to BRAF-inhibition therapy. We also carry out the first time-resolved single-cell RNA-seq study of early melanoma metastatic colonization, demonstrating that melanoma cells activate a SCP program transiently during early metastatic colonization. Finally, we discover a hybrid lineage state that resembles multiple melanocytic lineages simultaneously and is enriched in melanoma cells during metastatic seeding and in therapy resistance. Our work reveals that the lineage-specific mechanisms underlie melanoma progression/evolution, including early metastatic colonization and therapeutic resistance.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3