Chemical proteomic profiling of protein dopaminylation in colorectal cancer cells

Author:

Zhang Nan,Gao Shuaixin,Peng Haidong,Wu Jinghua,Li Huapeng,Gibson Connor,Wu Sophia,Zhu Jiangjiang,Zheng QingfeiORCID

Abstract

ABSTRACTHistone dopaminylation is a newly identified epigenetic mark that plays a role in the regulation of gene transcription, where an isopeptide bond is formed between the fifth amino acid residue of H3 (i.e., glutamine) and dopamine. In our previous studies, we discovered that the dynamics of this post-translational modification (including installation, removal, and replacement) were regulated by a single enzyme, transglutaminase 2 (TGM2), through reversible transamination. Recently, we developed a chemical probe to specifically label and enrich histone dopaminylation via bioorthogonal chemistry. Given this powerful tool, we found that histone H3 glutamine 5 dopaminylation (H3Q5dop) was highly enriched in colorectal tumors, which could be attributed to the high expression level of TGM2 in colon cancer cells. Due to the enzyme promiscuity of TGM2, non-histone proteins have also been identified as targets of dopaminylation on glutamine residues, however, the dopaminylated proteome in cancer cells still remains elusive. Here, we utilized our chemical probe to enrich dopaminylated proteins from colorectal cancer cells in a bioorthogonal manner and performed the chemical proteomics analysis. Therefore, 425 dopaminylated proteins were identified, many of which are involved in nucleic acid metabolism and transcription pathways. More importantly, a number of modification sites of these dopaminylated proteins were identified, attributed to the successful application of our chemical probe. Overall, these findings shed light on the significant association between cellular protein dopaminylation and cancer development, further suggesting that to block the installation of protein dopaminylation may become a promising anti-cancer strategy.TOC

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3