Topology changes of the regeneratingHydradefine actin nematic defects as mechanical organizers of morphogenesis

Author:

Ravichandran YaminiORCID,Vogg MatthiasORCID,Kruse KarstenORCID,Pearce Daniel JGORCID,Roux AurélienORCID

Abstract

AbstractHydrais named after the mythological animal for its regenerative capabilities, but contrary to its mythological counterpart, it only regenerates one head when cut. Here we show that soft compression of head regenerating tissues induces the regeneration of viable, two headed animals. Topological defects in the supracellular nematic organization of actin were previously correlated with the new head regeneration site1. Soft compression creates new topological defects associated with additional heads. To test the necessity of topological defects in head regeneration, we changed the topology of the tissue. By compressing the head regenerating tissues along their body axis, topological defects of the foot and of the regenerating head fused together, forming a toroid with no defects. Perfectly ordered toroids did not regenerate over eight days and eventually disintegrated. Spheroids made from excised body column tissue partially lose their actin order during regeneration. Compression of spheroids generated toroids with actin defects. These tissues regenerated into toroidal animals with functional head and foot, and a bifurcated body. Our results show that topological defects in the actin order are necessary to shape the head of the regeneratingHydra,supporting the notion that actin topological defects are mechanical organizers of morphogenesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3