Oriented Cell Dataset: efficient imagery analyses using angular representation

Author:

Kirsten LNORCID,Angonezi AL,Oliveira FD,Faccioni JL,Cassel CB,de Sousa DC Santos,Vedovatto S,Jung CR,Lenz G

Abstract

AbstractIn this work, we propose a new public dataset for cell detection in bright-field microscopy images annotated with Oriented Bounding Boxes (OBBs), named Oriented Cell Dataset (OCD). We show that OBBs provide a more accurate shape representation compared to standard Horizontal Bounding Boxes (HBBs), with slight overhead of one extra click in the annotation process. Our dataset also contains a subset of images with five independent expert annotations, which allows inter-annotation analysis to determine if the results produced by algorithms are within the expected variability of human experts. We investigated how to automate cell biology microscopy images by training seven popular OBB detectors in the proposed dataset, and focused our analyses on two main problems in cancer biology: cell confluence and polarity determination, the latter not possible through HBB representation. All models achieved statistically similar results to the biological applications compared to human annotation, enabling the automation of cell biology and cancer cell biology microscopy image analysis. Our code and dataset are available athttps://github.com/LucasKirsten/Deep-Cell-Tracking-EBB.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3