PARP14 is an interferon (IFN)-induced host factor that promotes IFN production and affects the replication of multiple viruses

Author:

Parthasarathy Srivatsan,Saenjamsai Pradtahna,Hao Hongping,Ferkul Anna,Pfannenstiel Jessica J.,Bejan Daniel S.,Chen Yating,Suder Ellen L.,Schwarting Nancy,Aikawa Masanori,Muhlberger Elke,Hume Adam J.,Orozco Robin C.ORCID,Sullivan Christopher S.,Cohen Michael S.,Davido David J.,Fehr Anthony R.ORCID

Abstract

ABSTRACTPARP14 is a 203 kDa multi-domain protein that is primarily known as an ADP-ribosyltransferase, and is involved in a variety of cellular functions including DNA damage, microglial activation, inflammation, and cancer progression. In addition, PARP14 is upregulated by interferon (IFN), indicating a role in the antiviral response. Furthermore, PARP14 has evolved under positive selection, again indicating that it is involved in host-pathogen conflict. We found that PARP14 is required for increased IFN-I production in response to coronavirus infection lacking ADP-ribosylhydrolase (ARH) activity and poly(I:C), however, whether it has direct antiviral function remains unclear. Here we demonstrate that the catalytic activity of PARP14 enhances IFN-βand IFN-λresponses and restricts ARH-deficient murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication. To determine if PARP14’s antiviral functions extended beyond CoVs, we tested the ability of herpes simplex virus 1 (HSV-1), a DNA virus, vesicular stomatitis virus (VSV), a negative-sense RNA virus, and lymphocytic choriomeningitis virus (LCMV), an ambisense RNA virus, to infect A549 PARP14 knockout (KO) cells. While LCMV infection was unaffected, HSV-1 replication was increased in PARP14 KO cells and VSV replication was decreased. These results indicate that PARP14 restricts HSV-1 replication but enhances the replication of VSV. A PARP14 active site inhibitor had no impact on HSV-1 or VSV replication, indicating that its effect on these viruses was independent of its catalytic activity. These data demonstrate that PARP14 promotes IFN production and has both proviral and antiviral functions targeting multiple viruses.IMPORTANCEThe antiviral response is largely regulated by post-translation modifications (PTM), including ADP-ribosylation. PARP14 is an ADP-ribosyltransferase that is upregulated by interferon and is under positive selection, indicating that it is involved in host-pathogen conflict. However, no anti-viral function has been described for PARP14. Here, we found that PARP14 represses both coronavirus and HSV-1 replication, demonstrating that PARP14 has antiviral functions. Surprisingly, we also found that PARP14 also has pro-viral functions, as it was critical for the efficient replication of VSV. These data indicate that PARP14 has both proviral and antiviral functions. Defining the mechanisms used by PARP14 to both repress and promote virus replication will provide new insights into how PARPs regulate virus infection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3