Endothelial SHP-1 regulates diabetes-induced abnormal collateral vessel formation and endothelial cell senescence

Author:

Nadeau Alexandre,Ouellet Marike,Béland Raphaël,Mercier Clément,Robillard Stéphanie,Lizotte Farah,Despatis Marc-Antoine,Benzinger C. Florian,Geraldes PedroORCID

Abstract

AbstractObjectiveIschemia due to narrowing of the femoral artery and distal vessels is a major cause of peripheral arterial disease and morbidity affecting patients with diabetes. Diabetes-induced premature senescence of endothelial cells (EC) has been proposed as a mechanism leading to impaired ischemia-driven angiogenesis. Importantly, our previous work has shown that hyperglycemia reduced vascular endothelial growth factor (VEGF) activity in ischemic muscle of diabetic mice, which was associated with increased expression of the protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1). Here, we evaluate the impact of SHP-1 deletion on EC function and senescence.Approach and ResultsLigation of the femoral artery was performed in nondiabetic (NDM) and 3 months diabetic (DM) mice with EC-specific deletion of SHP-1 and blood flow reperfusion was measured for 4 weeks. Blood flow reperfusion and limb function during voluntary wheel running were reduced by 43% and 82%, respectively in DM mice as compared to NDM mice. EC-specific deletion of SHP-1 in DM mice restored blood flow reperfusion by 60%, limb function by 86%, while capillary density was similar to NDM mice. Moreover, ablation of SHP-1 in EC prevented diabetes-induced expression of the senescence markers p53 and p21 and counteracted Nrf2 downregulation. In cultured EC, overexpression of dominant negative of SHP-1 prevented HG-induced inhibition of proliferation, migration, tubule formation and VEGFR2/Akt phosphorylation following VEGF stimulation. In addition, the expression of senescence markers and suppression of Nrf2 in EC exposed to HG levels were reversed by overexpression of dominant negative SHP-1.ConclusionSHP-1 in ECs is a central effector of diabetes-induced senescence that blocks VEGF action, and induces aberrant collateral vessel formation and blood flow reperfusion. Reduced SHP-1 expression counteracts these pathologic features suggesting the notion that it represents a promising therapeutic target.HIGHLIGHTSEndothelial specific deletion of SHP-1 (Scr homology 2-containing phosphatase-1) improves blood flow reperfusion, limb motricity and vessel density in the diabetic ischemic limb.Diabetes-induced SHP-1 protein expression inhibits VEGF proangiogenic actions and promotes endothelial senescence.Endothelial specific deletion of SHP-1 restores VEGF proangiogenic actions and prevents senescence in ischemic muscle and artery of diabetic mice and patients.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3