Establishing comprehensive quaternary structural proteomes from genome sequence

Author:

Catoiu Edward Alexander,Mih Nathan,Lu Maxwell,Palsson BernhardORCID

Abstract

AbstractA critical body of knowledge has developed through advances in protein microscopy, protein-fold modeling, structural biology software, availability of sequenced bacterial genomes, large-scale mutation databases, and genome-scale models. Based on these recent advances, we develop a computational framework that; i) identifies the oligomeric structural proteome encoded by an organism’s genome from available structural resources; ii) maps multi-strain alleleomic variation, resulting in the structural proteome for a species; and iii) calculates the 3D orientation of proteins across subcellular compartments with residue-level precision. Using the platform, we; iv) compute the quaternaryE. coliK-12 MG1655 structural proteome; v) use a dataset of 12,000 mutations to build Random Forest classifiers that can predict the severity of mutations; and, in combination with a genome-scale model that computes proteome allocation, vi) obtain the spatial allocation of theE. coliproteome. Thus, in conjunction with relevant datasets and increasingly accurate computational models, we can now annotate quaternary structural proteomes, at genome-scale, to obtain a molecular-level understanding of whole-cell functions.SignificanceAdvancements in experimental and computational methods have revealed the shapes of multi-subunit proteins. The absence of a unified platform that maps actionable datatypes onto these increasingly accurate structures creates a barrier to structural analyses, especially at the genome-scale. Here, we describe QSPACE, a computational annotation platform that evaluates existing resources to identify the best-available structure for each protein in a user’s query, maps the 3D location of actionable datatypes (e.g., active sites, published mutations) onto the selected structures, and uses third-party APIs to determine the subcellular compartment of all amino acids of a protein. As proof-of-concept, we deployed QSPACE to generate the quaternary structural proteome ofE. coliMG1655 and demonstrate two use-cases involving large-scale mutant analysis and genome-scale modelling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3