Neuromuscular connectomes across development reveal synaptic ordering rules

Author:

Meirovitch YaronORCID,Kang Kai,Draft Ryan W.,Pavarino Elisa C.,Henao Echeverri Maria Fernanda,Yang Fuming,Turney Stephen G.,Berger Daniel R.,Peleg Adi,Schalek Richard L.,Lu Ju,Livet JeanORCID,Tapia Juan-Carlos,Lichtman Jeff. W.ORCID

Abstract

AbstractThe connections between motor neurons and muscle fibers are dramatically reorganized in early postnatal life. This work attempts to better understand this synaptic rewiring by using a connectomic approach, i.e., tracing out all the connections between motor neurons and muscle fibers, at successive ages in a small mouse muscle. We reconstructed 31 partial-complete neuromuscular connectomes, using serial section scanning electron microscopy in a neonatal mouse and Brainbow-based and XFP-based fluorescent reconstructions in older animals. Our data included a total of more than 6000 neuromuscular junctions (NMJs), including complete connectomes from one newborn, seven developmental ages (P6-P9), and two adults. Analysis confirmed the massive rewiring that takes place as axons prune their motor units but add more synaptic areas at the NMJs with which they remain in contact. Interestingly, we found synaptic ordering rules that likely underlie this circuit maturation and yield the resulting adult neuromuscular pattern, as manifest in Henneman’s size principle. In particular, by analyzing both the identities of axons sharing NMJs at developing ages and muscle fibers with multiple endplates, we found evidence suggesting an activity-based linear ranking of motor neurons such that neurons co-innervated the same endplates and same muscle fibers (if there were more than one endplate) when the axons were similar in activity and hence rank. In addition, this ranking provided a means for understanding action at a distance in which the activity at one neuromuscular junction can impact the fate of the axons at another junction at a different site on the same muscle fiber. These activity-dependent mechanisms provide insight into the means by which timing of activity among different axons innervating the same population of cells, that start out with nearly all-to-all connectivity, can produce a well-organized system of axons, a system that is necessary for the recruitment order of neurons during a graded behavior like muscle contraction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3