Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population

Author:

Parker Clarissa C.,Philip Vivek M.,Gatti Daniel M.,Kasparek Steven,Kreuzman Andrew M.,Kuffler Lauren,Mansky Benjamin,Masneuf Sophie,Sharif Kayvon,Sluys Erica,Taterra Dominik,Taylor Walter M.,Thomas Mary,Polesskaya Oksana,Palmer Abraham A.,Holmes Andrew,Chesler Elissa J.

Abstract

AbstractBackgroundA strong predictor for the development of alcohol use disorders (AUDs) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool for elucidating the genetic basis of behavioral and physiological traits relevant to AUDs; but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations allow for the opportunity to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification.MethodsWe have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high density MEGAMuga and GIGAMuga arrays to obtain genotypes ranging from 77,808 – 143,259 SNPs. In addition, we performed RNA sequencing in striatum to map expression QTLs and to identify gene expression-trait correlations.ResultsWe then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exist between DNA sequence, gene expression values and ethanol-related phenotypes to prioritize our list of positional candidate genes.ConclusionsOur results can be used to identify alleles that contribute to AUDs in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3