Efficient targeted transgenesis of large donor DNA into multiple mouse genetic backgrounds using bacteriophage Bxb1 integrase

Author:

Low Benjamin E.,Hosur Vishnu,Lesbirel Simon,Wiles Michael V.

Abstract

AbstractEfficient, targeted integration of large DNA constructs represent a significant hurdle in genetic engineering for the development of mouse models of human disease and synthetic biology research. To address this, we developed a system for efficient and precise, targeted single-copy integration of large transgenes directly into the zygote using multiple mouse genetic backgrounds. Conventional approaches, such as random transgenesis, CRISPR/Cas9-mediated homology-directed repair (HDR), lentivirus-based insertion, or DNA transposases all have significant limitations. Our strategy uses in vivo Bxb1 mediated recombinase-mediated cassette exchange (RMCE) to efficiently generate precise single-copy integrations of transgenes. This is achieved using a transgene “landing pad” composed of dual heterologous Bxb1 attachment (att) sites in cis, pre-positioned in the Gt(ROSA)26Sor safe harbor locus. Successful RMCE is achieved in att carrier zygotes using donor DNA carrying cognate attachment sites flanking the desired donor transgene microinjected along with Bxb1-integrase mRNA. This approach routinely achieves perfect vector-free integration of donor constructs at efficiencies as high as 43% and has generated transgenic animals containing inserts up to ∼43kb. Furthermore, when coupled with a nanopore-based Cas9-targeted sequencing (nCATS) approach, complete verification of the precise insertion sequence can be achieved. As a proof-of-concept we describe the creation and characterization of C57BL/6J and NSG Krt18-ACE2 transgenic mouse models for SARS-CoV2 research with verified heterozygous N1 animals available for experimental use in ∼4 months. In addition, we created a diverse series of mouse backgrounds carrying a single att site version of the landing pad allele in C57BL/6J, NSG, B6(Cg)-Tyrc-2J/J, FVB/NJ, PWK/PhJ, 129S1/SvImJ, A/J, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, and DBA/2J for rapid transgene insertion. Combined, this system enables predictable, rapid creation of precisely targeted transgenic animals across multiple genetic backgrounds, simplifying characterization, speeding expansion and use.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3