Effect of a retinoic acid analogue on BMP-driven pluripotent stem cell chondrogenesis

Author:

Mancini Fabrizio E.,Humphreys Paul E.A.,Woods Steven,Bates Nicola,Cuvertino Sara,O’Flaherty Julieta,Biant Leela,Domingos Marco A.N.,Kimber Susan J.

Abstract

AbstractOsteoarthritis is the most common degenerative joint condition, leading to articular cartilage (AC) degradation, chronic pain and immobility. The lack of appropriate therapies that provide tissue restoration combined with the limited lifespan of joint-replacement implants indicate the need for alternative AC regeneration strategies. Differentiation of human pluripotent stem cells (hPSCs) into AC progenitors may provide a long-term regenerative solution but are still limited due to the continued reliance upon growth factors to recapitulate developmental signalling processes. Recently, TTNPB, a small molecule activator of retinoic acid receptors (RARs), has been shown to be sufficient to guide mesodermal specification and early chondrogenesis of hPSCs. Here, we modified our previous differentiation protocol, by supplementing cells with TTNPB and administering BMP2 at specific times to enhance early development. Transcriptomic analyses indicated that activation of RAR signalling significantly upregulated genes related to limb and embryonic skeletal development in the early stages of the protocol and upregulated genes related to AC development in later stages. Chondroprogenitors obtained from RAPID-E could generate cartilaginous pellets that expressed AC-related matrix proteins such as Lubricin, Aggrecan, and Collagen II. This protocol could lay the foundations for cell therapy strategies for osteoarthritis and improve the understanding of AC development in humans.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3