Time dependent effects of cerebellar tDCS on cerebello-cortical connectivity networks in young adults

Author:

Maldonado Ted,Jackson T. Bryan,Bernard Jessica A.

Abstract

AbstractThe cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function and network connectivity in aging or disease may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. This allows us to investigate network changes that may parallel what is seen in aging and clinical populations, providing additional insights into these key circuits. Critically, what happens to these circuits if the cerebellum is not functioning optimally remains relatively unknown. We employed a between-subjects design applying anodal (n=25), cathodal (n=25), or sham (n=24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a sliding window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly in cognitive region in the cortex. Assuming the difference in connectivity and network-behavior relationships here parallels what occurs in aging or disease, this may provide a mechanism whereby offloading of function to the cerebellum is negatively impacted, resulting in subsequent differences in prefrontal cortical activation patterns and performance deficits. These results might inform and update existing compensatory models of function to include the cerebellum as a vital structure needed for scaffolding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3