Heterogeneity of foam cell biogenesis across diseases

Author:

Guerrini Valentina,Prideaux Brendan,Khan Rehan,Subbian SelvakumarORCID,Wang Yina,Sadimin Evita,Pawar SiddhiORCID,Ukey RahulORCID,Singer Eric A.,Xue Chaoyang,Gennaro Maria LauraORCID

Abstract

AbstractFoam cells are dysfunctional, lipid-laden macrophages associated with chronic inflammation of infectious and non-infectious origin. For decades, the paradigm underlying foam cell biology has been based on atherogenesis, a disease in which macrophages are cholesterol-enriched. Our previous work showed that foam cells in tuberculous lung lesions surprisingly accumulate triglycerides, suggesting multiple modalities of foam cell biogenesis. In the present study, we used matrix-assisted laser desorption/ionization mass spectrometry imaging to assess the spatial distribution of storage lipids relative to foam-cell-rich areas in murine lungs infected with the fungal pathogenCryptococcus neoformansand in human papillary renal cell carcinoma resection tissues. We also analyzed neutral lipid content and the transcriptional program of lipid-laden macrophages generated under corresponding in vitro conditions. The in vivo data were consistent with in vitro findings showing thatC. neoformans-infected macrophages accumulated triglycerides, while macrophages exposed to human renal cell carcinoma-conditioned medium accumulated both triglycerides and cholesterol. Moreover, macrophage transcriptome analyses provided evidence for condition-specific metabolic remodeling. The in vitro data also showed that although bothMycobacterium tuberculosisandC. neoformansinfections induced triglyceride accumulation in macrophages, they did so by different molecular mechanisms, as evidenced by different sensitivity of lipid accumulation to the drug rapamycin and the characteristics of macrophage transcriptome remodeling. Collectively, these data demonstrate that the mechanisms of foam cell formation are specific to the disease microenvironment. Since foam cells have been regarded as targets of pharmacological intervention in several diseases, recognizing that their formation is disease-specific opens new research directions of biomedical significance.Significance statementChronic inflammatory states of infectious and non-infectious etiology are associated with dysfunctional immune responses. Primary contributors are foam cells, lipid-laden macrophages exhibiting impaired or pathogenic immune functions. In contrast with the long-standing paradigm derived from atherosclerosis, a disease in which foam cells are cholesterol-laden, our work demonstrates that foam cells are heterogeneous. Utilizing bacterial, fungal, and cancer models, we show that foam cells may accumulate various storage lipids (triglycerides and/or cholesteryl esters) by mechanisms that depend on disease-specific microenvironments. Thus, we present a new framework for foam cell biogenesis in which the atherosclerosis paradigm represents only a specific case. Since foam cells are potential therapeutic targets, understanding their mechanisms of biogenesis will provide knowledge needed for novel therapeutic approaches.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3