Task-driven neural network models predict neural dynamics of proprioception

Author:

Vargas Alessandro Marin,Bisi Axel,Chiappa Alberto,Versteeg Chris,Miller Lee,Mathis AlexanderORCID

Abstract

Proprioception tells the brain the state of the body based on distributed sensors in the body. However, the principles that govern proprioceptive processing from those distributed sensors are poorly understood. Here, we employ a task-driven neural network modeling approach to investigate the neural code of proprioceptive neurons in both cuneate nucleus (CN) and somatosensory cortex area 2 (S1). We simulated muscle spindle signals through musculoskeletal modeling and generated a large-scale, naturalistic movement repertoire to train thousands of neural network models on 16 behavioral tasks, each reflecting a hypothesis about the neural computations of the ascending proprioceptive pathway. We found that the network’s internal representations developed through task-optimization generalize from synthetic data to predict single-trial neural activity in CN and S1 of primates performing center-out reaching. Task-driven models outperform linear encoding models and data-driven models. Behavioral tasks, which aim to predict the limb position and velocity were the best to predict the neural activity in both areas. Architectures that are better at solving the tasks are also better at predicting the neural data. Last, since task-optimization develops representations that better predict neural activity during active but not passively generated movements, we hypothesize that neural activity in CN and S1 is top-down modulated during goal-directed movements.

Publisher

Cold Spring Harbor Laboratory

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3