Identification of a novel and ancestral machinery involved in mitochondrial membrane branching inTrypanosoma brucei

Author:

Morel Chloé Alexandra,Asencio Corinne,Blancard Corinne,Salin Bénédicte,Gontier Etienne,Duvezin-Caubet Stéphane,Rojo Manuel,Bringaud Frédéric,Tetaud Emmanuel

Abstract

ABSTRACTAfrican trypanosomes are eukaryotic parasites that exist in two main replicative forms; the procyclic form in the midgut of the insect vector, the tsetse fly Glossina spp. and the bloodstream form responsible for diseases in humans and cattle. Unlike most other eukaryotes, where mitochondria continuously fuse and divide, trypanosome mitochondria form a single and continuously interconnected network that only divides during cytokinesis. The machineries governing mitochondrial remodeling and interconnection, however, remain largely unknown. We characterize a dynamin-related protein (DRP) fromT. brucei(TbDBF, previously calledTbMfnL) that depicts sequence similarities with Opa1 and Mfn, mammalian DRPs involved mitochondrial fusion. We showed thatTbDBF has closely related homologues in several organisms that are devoid of Mfn and Opa1, such as eukaryotes from different phyla, prokaryotes and archaea.TbDBF is the first member of this new protein family to be functionally characterized. It localizes to the mitochondrial periphery and, upon overexpression, induces a strong increase in the interconnection and branching of mitochondrial filaments in a GTPase dependent manner. Its overexpression also promotes a major increase in cellular and mitochondrial volume and an increased consumption of the two major carbon sources used by the parasite (glucose and proline), as well as ethanolamine, a precursor of phosphatidyl-ethanolamine involved in membrane biogenesis and shaping. We propose that mitochondrialTbDBF is a component of an ancestral membrane remodeling machinery that contributes to the formation of intermitochondrial connections.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3