Wearable sensor and machine learning accurately estimate tendon load and walking speed during immobilizing boot ambulation

Author:

Kwon Michelle P.ORCID,Hullfish Todd J.ORCID,Humbyrd Casey J.,Boakye Lorraine A.T.,Baxter Josh R.ORCID

Abstract

AbstractAchilles tendon injuries are treated with progressive weight bearing to promote tendon healing and restore function. Patient rehabilitation progression are typically studied in controlled, lab settings and do not represent the long-term loading experienced during daily living. The purpose of this study is to develop a wearable paradigm to accurately monitor Achilles tendon loading and walking speed using low-cost sensors that reduce subject burden. Ten healthy adults walked in an immobilizing boot under various heel wedge conditions (30°, 5°, 0°) and walking speeds. Three-dimensional motion capture, ground reaction force, and 6-axis inertial measurement unit (IMU) signals were collected per trial. We used Least Absolute Shrinkage and Selection Operator (LASSO) regression to predict peak Achilles tendon load and walking speed. The effects of using only accelerometer data, different sampling frequency, and multiple sensors to train the model were also explored. Walking speed models outperformed (mean absolute percentage error (MAPE): 8.41 ± 4.08%) tendon load models (MAPE: 33.93 ± 23.9%). Models trained with subject-specific data performed significantly better than generalized models. For example, our personalized model that was trained with only subject-specific data predicted tendon load with a 11.5 ± 4.41% MAPE and walking speed with a 4.50 ± 0.91% MAPE. Removing gyroscope channels, decreasing sampling frequency, and using combinations of sensors had inconsequential effects on models performance (changes in MAPE < 6.09%). We developed a simple monitoring paradigm that uses LASSO regression and wearable sensors to accurately predict Achilles tendon loading and walking speed while ambulating in an immobilizing boot. This paradigm provides a clinically implementable strategy to longitudinally monitor patient loading and activity while recovering from Achilles tendon injuries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3