Sorafenib inhibits invasion of multicellular organoids that mimic Lymphangioleiomyomatosis nodules

Author:

Koc-Gunel Sinem,Gautam Lalit K.,Calvert Ben A.,Murthy Shubha,Harriott Noa C.,Nawroth Janna C.,Zhou Beiyun,Krymskaya Vera P.,Ryan Amy L.ORCID

Abstract

AbstractLymphangioleiomyomatosis (LAM) is a debilitating, progressive lung disease with few therapeutic options, largely due to a paucity of mechanistic knowledge of disease pathogenesis. Lymphatic endothelial cells (LECs) are known to envelope and invade clusters of LAM-cells, comprising of smooth muscle α-actin and/or HMB-45 positive "smooth muscle-like cells” however the role of LECs in LAM pathogenesis is still unknown. To address this critical knowledge gap, we investigated wether LECs interact with LAM-cells to augment their metastatic behaviour of LAM-cells. We performedin situspatialomics and identified a core of transcriptomically related cells within the LAM nodules. Pathway analysis highlights wound and pulmonary healing, VEGF signaling, extracellular matrix/actin cytoskeletal regulating and the HOTAIR regulatory pathway enriched in the LAM Core cells. We developed an organoid co-culture model combining primary LAM-cells with LECs and applied this to evaluate invasion, migration, and the impact of Sorafenib, a multi-kinase inhibitor. LAM-LEC organoids had significantly higher extracellular matrix invasion, decreased solidity and a greater perimeter, reflecting increased invasion compared to non-LAM control smooth muscle cells. Sorafenib significantly inhibited this invasion in both LAM spheroids and LAM-LEC organoids compared to their respective controls. We identified TGFβ1ι1, a molecular adapter coordinating protein-protein interactions at the focal adhesion complex and known to regulate VEGF, TGFβ and Wnt signalling, as a Sorafenib-regulated kinase in LAM-cells. In conclusion we have developed a novel 3D co-culture LAM model and have demonstrated the effectiveness of Sorafenib to inhibit LAM-cell invasion, identifying new avenues for therapeutic intervention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3