Reverse engineering of a pathogenic antibody reveals the molecular mechanism of vaccine-induced immune thrombotic thrombocytopenia

Author:

Ivanov Daniil G.ORCID,Ivetic Nikola,Du Yi,Nguyen Son N.,Le S. Hung,Favre Daniel,Nazy Ishac,Kaltashov Igor A.ORCID

Abstract

AbstractThe massive COVID-19 vaccine roll-out campaign illuminated a range of rare side effects, the most dangerous of which – vaccine-induced immune thrombotic thrombocytopenia (VITT) – is caused by adenoviral (Ad)-vectored vaccines. VITT occurrence had been linked to production of pathogenic antibodies that recognize an endogenous chemokine, platelet factor 4 (PF4). Mass spectrometry (MS)-based evaluation of the ensemble of anti-PF4 antibodies obtained from a VITT patient’s blood indicates that its major component is a monoclonal antibody. Structural characterization of this antibody reveals several unusual characteristics, such as the presence of anN-glycan in the Fab segment and high density of acidic amino acid residues in the CDR regions. A recombinant version of this antibody (RVT1) was generated by transient expression in mammalian cells based on the newly determined sequence. It captures the key properties of VITT antibodies, such as their ability to activate platelets in a PF4-dependent fashion. Homology modeling of the Fab segment reveals a well-defined polyanionic paratope, and the docking studies indicate that the polycationic segment of PF4 readily accommodates two Fab segments, cross-linking the antibodies to yield polymerized immune complexes. Their existence was verified with native MS by detecting assemblies as large as (RVT1)3(PF4)2, pointing out at FcγRIIa-mediated platelet activation as the molecular mechanism underlying VITT clinical manifestations. In addition to high PF4 affinity, RVT1 readily binds other polycationic targets, indicating a polyreactive nature of this antibody. This surprising polyspecificity not only sheds light on VITT etiology, but also opens up a range of opportunities to manage this pathology.Significance StatementVaccine-induced immune thrombotic thrombocytopenia (VITT) is a dangerous side effect of adenoviral-vectored vaccines that is linked to the emergence of autoantibodies recognizing platelet factor 4 (PF4). We have engineered a recombinant VITT antibody by sequencing a VITT patient-derived anti-PF4 monoclonal antibody that causes platelet activation and triggers thrombosis. This antibody was used to characterize architecture of the pathogenic immune complexes with a combination of biophysical and computational approaches, revealing the molecular mechanism of VITT. The results of this work demonstrate the critical role of electrostatics in PF4 recognition by the pathogenic antibody and the polyspecificity of the latter. Availability of the engineered VITT antibody will be invaluable for future studies aiming at understanding the general mechanistic features of autoimmune pathologies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3