Microbiome disturbance and resilience dynamics of the upper respiratory tract in response to influenza A virus infection in humans and ferrets

Author:

Kaul Drishti,Rathnasinghe Raveen,Ferres Marcela,Tan Gene S.,Barrera Aldo,Pickett Brett E.,Methe Barbara A.,Das Suman,Budnik Isolda,Halpin Rebecca A.,Wentworth David,Schmolke Mirco,Mena Ignacio,Albrecht Randy A.,Singh Indresh,Nelson Karen E.,García-Sastre Adolfo,Dupont Chris L.,Medina Rafael A.

Abstract

AbstractInfection with influenza can be aggravated by bacterial co-infections, which often results in disease exacerbation because of host responses and cellular damage. The native upper respiratory tract (URT) microbiome likely plays a role, yet the effects of influenza infection on the URT microbiome are largely unknown. We performed a longitudinal study to assess the temporal dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and ferrets. Uninfected human patients and ferret URT microbiomes had stable “heathy ecostate” communities both within and between individuals. In contrast, infected patients and ferrets exhibited large changes in bacterial community composition over time and between individuals. The “unhealthy” ecostates of infected individuals progressed towards the “healthy ecostate” over time, coinciding with viral clearance and recovery. Blooms of Pseudomonas were a statistically associated constant in the disturbed microbiomes of infected individuals. The dynamic and resilient nature of the microbiome during influenza virus infection in multiple hosts provides a compelling rationale for the maintenance of the microbiome homeostasis as a potential therapeutic target to prevent IAV associated bacterial co-infections.One Sentence SummaryDynamics of the upper respiratory tract microbiome during influenza A virus infection

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3