Author:
Lis John T.,Mason Paul,Peng J.,Price David H.,Werner Janis
Abstract
P-TEFb, a heterodimer of the kinase Cdk9 and cyclin T, was isolated as a factor that stimulates formation of productive transcription elongation complexes in vitro. Here, we show that P-TEFb is located at >200 distinct sites on Drosophila polytene chromosomes. Upon heat shock, P-TEFb, like the regulatory factor HSF, is rapidly recruited to heat shock loci, and this recruitment is blocked in an HSF mutant. Yet, HSF binding to DNA is not sufficient to recruit P-TEFb in vivo, and HSF and P-TEFb immunostainings within a heat shock locus are not coincident. Insight to the function of P-TEFb is offered by experiments showing that the direct recruitment of a Gal4-binding domain P-TEFb hybrid to an hsp70 promoter in Drosophilacells is sufficient to activate transcription in the absence of heat shock. Analyses of point mutants show this P-TEFb stimulation is dependent on Cdk9 kinase activity and on Cdk9's interaction with cyclin T. These results, coupled with the frequent colocalization of P-TEFb and the hypophosphorylated form of RNA polymerase II (Pol II) found at promoter-pause sites, support a model in which P-TEFb acts to stimulate promoter-paused Pol II to enter into productive elongation.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献