Kinome Inhibition States and Multiomics Data Enable Prediction of Cell Viability in Diverse Cancer Types

Author:

Berginski Matthew E.ORCID,Joisa Chinmaya U.ORCID,Golitz Brian T.,Gomez Shawn M.ORCID

Abstract

AbstractProtein kinases play a vital role in a wide range of cellular processes and compounds that inhibit kinase activity have emerged as a primary focus for targeted therapy development in cancer. This has inspired work that characterizes the spectrum of kinases targeted by specific inhibitors and the inclusion of these inhibitors in large-scale cell viability screening efforts. Previous work with smaller datasets have used baseline profiling of cell lines and limited kinome profiling data to attempt to predict small molecule effects on cell viability, but these efforts did not use multi-dose kinase profiles and achieved low accuracy with very limited external validation. This work focuses on two primary data types, kinase inhibitor profiles and gene expression, to predict the results of cell viability screening. We describe the process by which we combined these data sets, examined their properties in relation to cell viability and finally developed a set of computational models that achieve reasonable prediction accuracy (R2 of 0.78 and RMSE of 0.154). Using these models, we identified a set of kinases, several of which are understudied, that are strongly influential in the cell viability prediction models. In addition, we also tested to see if a wider range of multiomics data sets could improve the model results. Finally, we validated a small subset of the model predictions in several triple-negative and HER2 positive breast cancer cell lines demonstrating that the model performs well with compounds and cell lines that were not included in the training data set. Overall, this result demonstrates that generic knowledge of the kinome is predictive of very specific cell phenotypes, and has the potential to be integrated into targeted therapy development pipelines.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3