Quantitation of FGFR3 signaling via GRB2 recruitment on micropatterned surfaces

Author:

Hartl IngridORCID,Brumovska VeronikaORCID,Striedner Yasmin,Yasari AtenaORCID,Schütz Gerhard J.,Sevcsik EvaORCID,Tiemann-Boege IreneORCID

Abstract

AbstractFibroblast growth factor receptors (FGFRs) initiate signal transduction via the RAS/MAPK pathway by their tyrosine-kinase activation known to determine cell-growth, tissue differentiation and apoptosis. Recently, many missense mutations have been reported for FGFR3, but we only know the functional effect for a handful of them. Some of these mutations result in aberrant FGFR3 signaling and are associated with various genetic disorders and oncogenic conditions. Here we employed micropatterned surfaces to specifically enrich fluorophore-tagged FGFR3 (mGFP-FGFR3) in certain areas of the plasma membrane of living cells. Receptor activation was then quantified via the recruitment of the downstream signal transducer GRB2 tagged with mScarlet (GRB2-mScarlet) to FGFR3 patterns. With this system, we tested the activation of FGFR3 upon ligand addition (fgf1 and fgf2) in the wildtype (WT), as well as in different FGFR3 mutants associated with congenital disorders (G380R, Y373C, K650Q, K650E). Our data showed that the addition of ligands increased GRB2 recruitment to WT FGFR3, with fgf1 having a stronger effect than fgf2. For all mutants, we found an increased basal receptor activity, and only for two of the four mutants (G380R and K650Q), activity was further increased upon ligand addition. Compared to previous reports, two mutant receptors (K650Q and K650E) had either an unexpectedly high or low activation state, respectively. This may be explained by the different receptor populations probed, since the micropatterning method specifically reports on signaling events at the plasma membrane.Graphical AbstractSpecifications: The maximum size of the image should be 200 × 500 pixels with a minimum resolution of 300 dpi, using Arial font with a size of 10-16 points; Preferred file types: TIFF, EPS, PDF or MS Office filesResearch HighlightsQuantification of FGFR3 signaling in live cells on micropatterned surfacesAnalysis of GRB2 recruitment to the mature receptor at the plasma membraneLigand-independent kinase activation of FGFR3 mutantsActivation of FGFR3 at the cell surface can be different than in bulk cell extracts

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3