Mutations in the Insulator Protein Suppressor of Hairy Wing Induce Genome Instability

Author:

Hsu Shih-Jui,Stow Emily C.,Simmons James R.,Wallace Heather A.,Lopez Andrea Mancheno,Stroud Shannon,Labrador Mariano

Abstract

AbstractChromatin insulator proteins mediate the formation of contacts between distant insulator sites along chromatin fibers. Long-range contacts facilitate communication between regulatory sequences and gene promoters throughout the genome, allowing accurate gene transcription regulation during embryo development and cell differentiation. Lack of insulator function has detrimental effects often resulting in lethality. The Drosophila insulator protein Suppressor of Hairy wing [Su(Hw)] is not essential for viability, but plays a crucial role in female oogenesis. The mechanism(s) by which Su(Hw) promotes proper oogenesis remains unclear. To gain insight into the functional properties of chromatin insulators, we further characterize the oogenesis phenotypes of su(Hw) mutant females. We find that mutant egg chambers frequently display an irregular number of nurse cells, have poorly formed microtubule organization centers (MTOC) in the germarium, and show mislocalized Gurken (Grk) in later stages of oogenesis. Furthermore, eggshells produced by partially rescued su(Hw) mutant females exhibit dorsoventral patterning defects that are identical to defects found in spindle mutants or in piRNA pathway mutants. Further analysis reveals an excess of DNA damage in egg chambers, which is independent of activation of transposable elements, and that Gurken localization defects and oogenesis progression are partially rescued by mutations in mei-41 and chk1 genes. In addition, we show that Su(Hw) is required for chromosome integrity in dividing neuroblasts from larval brains. Together, these findings suggest that Su(Hw) plays a critical role in maintaining genome integrity during germline development in Drosophila females as well as in dividing somatic cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3