Abstract
AbstractArabinogalactan protein (AGP) glycan biosynthesis in the Golgi apparatus contributes to plant cell wall assembly, but the mechanisms underlying this process are largely unknown. Here, we show that two putative galactosyltransferases -named GALT7 and GALT8 -from the glycosyltransferase family 31 (GT31) of Arabidopsis thaliana participate in cellulose biosynthesis. galt7galt8 mutants show primary cell wall defects manifesting as impaired growth and cell expansion in seedlings and etiolated hypocotyls, along with secondary cell wall defects, apparent as collapsed xylem vessels and reduced xylem wall thickness in the inflorescence stem. These phenotypes were associated with a ∼30% reduction in cellulose content, a ∼50% reduction in secondary cell wall CELLULOSE SYNTHASE (CESA) protein levels and reduced cellulose biosynthesis rate. CESA transcript levels were not significantly altered in galt7galt8 mutants, suggesting that the reduction in CESA levels was caused by a post-transcriptional mechanism. We provide evidence that both GALT7 and GALT8 localise to the Golgi apparatus, while quantitative proteomics experiments revealed reduced levels of the entire FLA subgroup B in the galt7galt8 mutants. This leads us to hypothesize that a defect in FLA subgroup B glycan biosynthesis reduces cellulose biosynthesis rate in galt7galt8 mutants.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献