Lipid droplets modulate proteostasis, SQST-1/SQSTM1 dynamics, and lifespan in C. elegans

Author:

Kumar Anita V.ORCID,Mills JoslynORCID,Parker Wesley M.,Leitão Joshua A.,Ng Celeste,Patel Rishi,Aguilera Joseph L.,Johnson Joseph R.,Wong Shi QuanORCID,Lapierre Louis R.ORCID

Abstract

ABSTRACTThe ability of organisms to live long depends largely on the maintenance of proteome stability via proteostatic mechanisms including translational regulation, protein chaperoning and degradation machineries. In several long-lived Caenorhabditis elegans strains, such as insulin/IGF-1 receptor daf-2 mutants, enhanced proteostatic mechanisms are accompanied by elevated intestinal lipid stores, but the role of lipid droplets in longevity has remained obscure. Here, while determining the regulatory network of the selective autophagy receptor SQST-1/SQSTM1, we unexpectedly uncovered a novel role for lipid droplets in proteostasis and longevity. Using an unbiased genome-wide RNAi screening approach, we identified several SQST-1 modulators, including proteins found on lipid droplets and those prone to aggregate with age. SQST-1 accumulated on lipid droplets when autophagy was inhibited, suggesting that lipid droplets may serve a role in facilitating selective autophagy. Expansion of intestinal lipid droplets by silencing the conserved cytosolic triacylglycerol lipase gene atgl-1/ATGL enhanced autophagy, and extended lifespan in an HSF-1/HSF1-dependent and CDC-48/VCP-dependent manner. Silencing atgl-1 mitigated the age-related accumulation of SQST-1 and reduced overall ubiquitination of proteins. Reducing atgl-1 also improved proteostasis in a nematode model of Alzheimer’s disease. Subcellular analyses revealed that lipid droplets unexpectedly harbor more ubiquitinated proteins than the cytosol. Accordingly, low lipid droplet levels exacerbated the proteostatic collapse when autophagy or proteasome function was compromised. Altogether, our study uncovers a key role for lipid droplets in C. elegans as a proteostatic mediator that reduces protein ubiquitination, facilitates autophagy, and promotes longevity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selective Autophagy Receptor p62/SQSTM1, a Pivotal Player in Stress and Aging;Frontiers in Cell and Developmental Biology;2022-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3