Remodeling tumor microenvironment by liposomal co-delivery of DMXAA and simvastatin inhibits malignant melanoma progression

Author:

Rauca Valentin-FlorianORCID,Patras LauraORCID,Luput LaviniaORCID,Licarete EmiliaORCID,Toma Vlad-AlexandruORCID,Porfire AlinaORCID,Mot Augustin-CatalinORCID,Rakosy-Tican ElenaORCID,Sesarman AlinaORCID,Banciu ManuelaORCID

Abstract

AbstractAnti-angiogenic therapies for melanoma have not yet been translated into meaningful clinical benefit for patients, due to development of drug-induced resistance in cancer cells, mainly caused by hypoxia-inducible factor 1α (HIF-1α) overexpression and enhanced oxidative stress mediated by tumor-associated macrophages (TAMs). Our previous study demonstrated synergistic antitumor actions of simvastatin (SIM) and 5,6-dimethylxanthenone-4-acetic acid (DMXAA) on anin vitromelanoma modelviasuppression of the aggressive phenotype of melanoma cells and inhibition of TAMs-mediated angiogenesis. Therefore, we took the advantage of long circulating liposomes (LCL) superior tumor targeting capacity to efficiently deliver SIM and DMXAA to B16.F10 melanomain vivo, with the final aim of improving the outcome of the anti-angiogenic therapy. Thus, we assessed the effects of this novel combined tumor-targeted treatment ons.c. B16.F10 murine melanoma growth and on the production of critical markers involved in tumor development and progression. Our results showed that the combined liposomal therapy inhibited almost totally the growth of melanoma tumors, due to the enhancement of anti-angiogenic effects of LCL-DMXAA by LCL-SIM and induction of a pro-apoptotic state in the tumor microenvironment (TME). These effects were favoured by the partial re-education of TAMs towards a M1 phenotype and maintained via suppression of major invasion and metastasis promoters (HIF-1α, pAP-1 c-Jun, and MMPs). Thus, this novel therapy holds the potential to remodel the tumor microenvironment, by suppressing its most important malignant biological capabilities.HighlightsNovel combined liposomal delivery of SIM and DMXAA inhibits melanoma tumor growthLCL-SIM augments the anti-angiogenic effects of LCL-DMXAACombined liposomal therapy inhibits HIF-1α/VEGF axis, induces apoptosis and TAM re-education in tumorsThis novel therapy suppresses the most important malignant capabilities of melanoma

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3