Immersive virtual prism adaptation therapy with depth-sensing camera: A feasibility study with functional near-infrared spectroscopy in healthy adults

Author:

Cho SungminORCID,Kim Won-SeokORCID,Park Jihong,Lee Seung HyunORCID,Lee JongseungORCID,Han Cheol E.ORCID,Paik Nam-JongORCID

Abstract

AbstractUnilateral spatial neglect (USN) is common after stroke and associated with poor functional recovery. Prism adaptation (PA) is one of the most supported modality able to ameliorate USN but underapplied due to several issues. Using immersive virtual reality and depth-sensing camera, we developed the virtual prism adaptation therapy (VPAT) to overcome the limitations in conventional PA. In this study, we investigated whether VPAT can induce behavioral adaptations and which cortical area is most significantly activated. Fourteen healthy subjects participated in this study. The experiment consisted of four sequential phases (pre-VAPT, VPAT-10°, VPAT-20°, and post-VPAT) with functional near-infrared spectroscopy recordings. Each phase consisted of alternating target pointing and resting (or clicking) blocks. To find out the most significantly activated area during pointing in different phases (VPAT-10°, VPAT-20°, and Post-VPAT) in contrast to pointing during the pre-VPAT phase, we analyzed changes in oxyhemoglobin concentration during pointing. The pointing errors of the virtual hand deviated to the right-side during early pointing blocks in the VPAT-10° and VPAT-20° phases. There was a left-side deviation of the real hand to the target in the post-VPAT phase. The most significantly activated channels were all located in the right hemisphere, and possible corresponding cortical areas included the dorsolateral prefrontal cortex and frontal eye field. In conclusion, VPAT may induce behavioral adaptation with modulation of the dorsal attentional network. Future clinical trials using multiple sessions of a high degree of rightward deviation VPAT over a more extended period are required in stroke patients with unilateral spatial neglect.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3