A robust method of extraction and GC-MS analysis of Monophenols exhibited UV-B mediated accumulation in Arabidopsis

Author:

Lingwan ManeeshORCID,Masakapalli Shyam KumarORCID

Abstract

AbstractStudies on specialised metabolites like phenolics are of immense interest owing to their significance to agriculture, nutrition and health. In plants, phenolics accumulate and exhibits spatial and temporal regulations in response to growth conditions. Robust methodologies aimed at efficient extraction of plant phenolics, their qualitative and quantitative analysis is desired. We optimised the analytical and experimental bottlenecks that captured free, ester, glycoside and wall-bound phenolics after acid or alkali treatments of the tissue extracts and subsequent GC-MS analysis. Higher recovery of phenolics from the methanolic extracts was achieved by through a) Ultrasonication assisted extraction along with Methyl tert-butyl ether (MTBE) enrichment b) nitrogen gas drying and c) their derivatisation using MSTFA for GC-MS analysis. The optimised protocol was tested on Arabidopsis rosette exposed to UV-B radiation (280-315 nm) which triggered enhanced levels of 11 monophenols and might be attributed to photoprotection and other physiological roles. Interestingly, coumaric acid (308 m/z) and caffeic acid (396 m/z) levels were enhanced by 12-14 folds under UV-B. Other phenolics such as cinnamic acid (220 m/z), hydroxybenzoic acid (282 m/z), vanillic acid (312 m/z, gallic acid (458 m/z), ferulic acid (338 m/z), benzoic acid (194 m/z), hydroxycinnamic acid (368 m/z) and protocatechuic acid (370 m/z) also showed elevated levels by about 1 to 4 folds. Notably, vanillin (253 m/z) was detected only in the UV-B exposed tissues. The protocol also comprehensively captured the variations in the levels of ester, glycoside and wall-bounded phenolics with high reproducibility and sensitivity. The robust method of extraction and GC-MS analysis can readily be adopted for studying phenolics in plant systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3