Network-based pathogenicity prediction for variants of uncertain significance

Author:

Kamada Mayumi,Takagi Atsuko,Kojima Ryosuke,Tanaka Yoshihisa,Nakatsui Masahiko,Tanabe Noriko,Hirata Makoto,Yoshida Teruhiko,Okuno Yasushi

Abstract

SummaryWhile the number of genome sequences continues to increase, the functions of many detected gene variants remain to be identified. These variants of uncertain significance constitute a major barrier to precision medicine 1–3. Although many computational methods have been developed to predict the function of these variants, they all rely on individual gene features and do not consider complex molecular relationships. Here we develop PathoGN, a molecular network-based approach for predicting variant pathogenicity. PathoGN significantly outperforms existing methods using benchmark datasets. Moreover, PathoGN successfully predicts the pathogenicity of 3,994 variants of uncertain significance in the real-world database ClinVar and designates potential pathogenicity. This is the first computational method for the clinical interpretation of variants using biomolecular networks, and we anticipate our method to be broadly useful for the clinical interpretation of variants and for assigning biological function to unknown variants at the genomic scale.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3