A multi-dataset evaluation of frame censoring for task-based fMRI

Author:

Jones Michael S.ORCID,Zhu Zhenchen,Bajracharya AahanaORCID,Luor AustinORCID,Peelle Jonathan E.ORCID

Abstract

AbstractSubject motion during fMRI can affect our ability to accurately measure signals of interest. In recent years, frame censoring—that is, statistically excluding motion-contaminated data within the general linear model using nuisance regressors—has appeared in several task-based fMRI studies as a mitigation strategy. However, there have been few systematic investigations quantifying its efficacy. In the present study, we compared the performance of frame censoring to several other common motion correction approaches for task-based fMRI using open data and reproducible workflows. We analyzed eight datasets available on OpenNeuro.org representing eleven distinct tasks in child, adolescent, and adult participants. Performance was quantified using maximum t-values in group analyses, and ROI-based mean activation and split-half reliability in single subjects. We compared frame censoring to the use of 6 and 24 canonical motion regressors, wavelet despiking, robust weighted least squares, and untrained ICA-based denoising. Thresholds used to identify censored frames were based on both motion estimates (FD) and image intensity changes (DVARS). Relative to standard motion regressors, we found consistent improvements for modest amounts of frame censoring (e.g., 1–2% data loss), although these gains were frequently comparable to what could be achieved using other techniques. Importantly, no single approach consistently outperformed the others across all datasets and tasks. These findings suggest that although frame censoring can improve results, the choice of a motion mitigation strategy depends on the dataset and the outcome metric of interest.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. A quantitative comparison of motion detection algorithms in fMRI

2. Ashburner J , Friston KJ (2004) Rigid Body Registration. In: Human Brain Function, Second. ( Frackowiak RSJ , Friston KJ , Frith CD , Dolan RJ , Price CJ , Zeki S , Ashburner J , Penny W , eds), pp 635–653. New York: Elsevier.

3. Unified segmentation

4. Neural mechanisms of cue-approach training;Neuroimage,2017

5. How reliable are the results from functional magnetic resonance imaging?

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3