Precision localization of cellular proteins with fluorescent Fab-based probes

Author:

Liccardo F.ORCID,Lo Monte M.ORCID,Corrado B.,Veneruso M.,Celentano S.,Coscia M.R.ORCID,Coppola G.,Pucci P.,Palumbo G.,Luini A.ORCID,Lampe M.ORCID,Marzullo V.M.ORCID

Abstract

ABSTRACTCurrently, a major technical limitation of microscopy based image analysis is the linkage error – which describes the distance between e.g. the target epitope of cellular protein to the fluorescence emitter, which position is finally detected in a microscope. With continuously improving resolution of today’s (super-resolution) microscopes, the linkage errors can severely hamper the correct interpretation of images and is usually introduced in experiments by the use of standard intracellular staining reagents such as fluorescently labelled antibodies. The linkage error of standard labelled antibodies is caused by the size of the antibody and the random distribution of fluorescent emitters on the antibody surface. Together, these two factors account for a fluorescence displacement of ~40nm when staining proteins by indirect immunofluorescence; and ~20nm when staining with fluorescently coupled primary antibodies. In this study, we describe a class of staining reagents that effectively reduce the linkage error by more than five-fold when compared to conventional staining techniques. These reagents, called Fluo-N-Fabs, consist of an antigen binding fragment of a full-length antibody (Fab / fragment antigen binding) that is selectively conjugated at the N-terminal amino group with fluorescent organic molecules, thereby reducing the distance between the fluorescent emitter and the protein target of the analysis. Fluo-N-Fabs also exhibit the capability to penetrate tissues and highly crowded cell compartments, thus allowing for the efficient detection of cellular epitopes of interest in a wide range of fixed samples. We believe this class of reagents realize an unmet need in cell biological super resolution imaging studies where the precise localization of the target of interest is crucial for the understanding of complex biological phenomena.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3